The cleaved cytoplasmic tail of polycystin-1 regulates Src-dependent STAT3 activation.

نویسندگان

  • Jeffrey J Talbot
  • Xuewen Song
  • Xiaofang Wang
  • Markus M Rinschen
  • Nicholas Doerr
  • Wells B LaRiviere
  • Bernhard Schermer
  • York P Pei
  • Vicente E Torres
  • Thomas Weimbs
چکیده

Polycystin-1 (PC1) mutations result in proliferative renal cyst growth and progression to renal failure in autosomal dominant polycystic kidney disease (ADPKD). The transcription factor STAT3 (signal transducer and activator of transcription 3) was shown to be activated in cyst-lining cells in ADPKD and PKD mouse models and may drive renal cyst growth, but the mechanisms leading to persistent STAT3 activation are unknown. A proteolytic fragment of PC1 corresponding to the cytoplasmic tail, PC1-p30, is overexpressed in ADPKD. Here, we show that PC1-p30 interacts with the nonreceptor tyrosine kinase Src, resulting in Src-dependent activation of STAT3 by tyrosine phosphorylation. The PC1-p30-mediated activation of Src/STAT3 was independent of JAK family kinases and insensitive to the STAT3 inhibitor suppressor of cytokine signaling 3. Signaling by the EGF receptor (EGFR) or cAMP amplified the activation of Src/STAT3 by PC1-p30. Expression of PC1-p30 changed the cellular response to cAMP signaling. In the absence of PC1-p30, cAMP dampened EGFR- or IL-6-dependent activation of STAT3; in the presence of PC1-p30, cAMP amplified Src-dependent activation of STAT3. In the polycystic kidney (PCK) rat model, activation of STAT3 in renal cystic cells depended on vasopressin receptor 2 (V2R) signaling, which increased cAMP levels. Genetic inhibition of vasopressin expression or treatment with a pharmacologic V2R inhibitor strongly suppressed STAT3 activation and reduced renal cyst growth. These results suggest that PC1, via its cleaved cytoplasmic tail, integrates signaling inputs from EGFR and cAMP, resulting in Src-dependent activation of STAT3 and a proliferative response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polycystin-1 regulates STAT activity by a dual mechanism.

Mutations in polycystin-1 (PC1) lead to autosomal-dominant polycystic kidney disease (ADPKD), a leading cause of renal failure for which no treatment is available. PC1 is an integral membrane protein, which has been implicated in the regulation of multiple signaling pathways including the JAK/STAT pathway. Here we show that membrane-anchored PC1 activates STAT3 in a JAK2-dependent manner, leadi...

متن کامل

Activation of STAT3 by the Src family kinase Hck requires a functional SH3 domain.

STAT3 is a member of a family of transcription factors with Src homology 2 (SH2) domains that are activated by tyrosine phosphorylation in response to a wide variety of cytokines and growth factors. In this study, we investigated the mechanism of STAT3 activation by the Src family of nonreceptor tyrosine kinases, which have been linked to STAT activation in both normal and transformed cell type...

متن کامل

Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy

Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expres...

متن کامل

Regulation of Polycystin-1 Function by Calmodulin Binding

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common genetic disease that leads to progressive renal cyst growth and loss of renal function, and is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The PC1/PC2 complex localizes to primary cilia and can act as a flow-dependent calcium channel in addition to numerous other signaling fun...

متن کامل

Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by beta-3 integrin

Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by beta-3 integrin. he ␤ 3 integrin cytoplasmic domain, and specifically S 752 , is critical for integrin localization and osteoclast (OC) function. Because growth factors such as mac-rophage colony–stimulating factor and hepatocyte growth factor affect integrin activation and functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 25 8  شماره 

صفحات  -

تاریخ انتشار 2014